

マイクロSSP

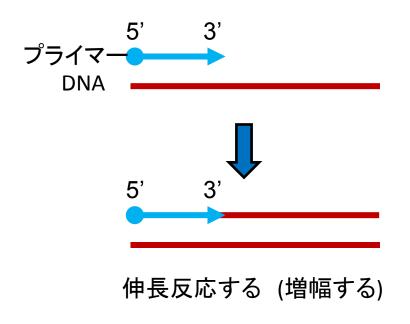
PCR-SSP法による HLA-DNAタイピング試薬

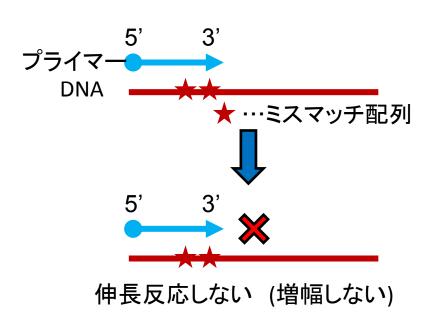
One Lambda社について

Advancing Transplant Diagnostics

- 1984年創設
- 本社: アメリカ・カリフォルニア州
- ・ 高品質で最先端のHLAタイピング・移植関連 試薬を製造
- 高い研究開発力
- 日本人集団だけでなく、すべての人種に対応 した試薬を供給

HLAタイピング法




方法	製品名	検体処 理数	時間	DNA	解像度	必要な機器
SSP	マイクロ SSP	Δ	©	Δ	○ または ◎	ゲル泳動槽
022	LABType SSO	0	0	0	0	LABScan 100 / Luminex
SSO	LABType HD	©	0	0	0	LABScan 100 / Luminex
SBT (参考)		0	Δ	0	0	シークエンサー

PCR-SSP(Sequence Specific Primer)法

- ある特定の配列をもったDNA部位だけをPCRで増幅
- PCRプライマーの3'-末端に特異な配列を設定
- 各プライマーの「増幅」の有無から、アリルを判定

マイクロSSP

- PCR-SSP法によるHLAタイピングキット
- ・ 操作が簡便(解析まで約2時間)

マイクロSSPキットの構成

- 96ウェルトレー
 - 各ウェルに凍結乾燥したプライマーが分注済み
 - キットによりトレーのウェル数が異なる
- D-mix
- ・トレーシール

キットに含まれない必要試薬

商品名	メーカー	カタログ番号
Ampli <i>Taq</i> DNA ポリメラーゼ	ABI (Life Technologies)	N8081060
SeaKem LE Agarose	タカラバイオ (FMC Bioproducts)	50000, 50001, 50004, 50005
エチジウムブロマイド	メーカー問わず	
ベリタスサイズマーカー	ベリタス	IBL-MK
TBE	メーカー問わず	

マイクロSSPに必要な器具・機器類

商品名	メーカー	カタログ番号
GeneAmp PCR System 9700 またはVeriti (アルミヘッドは不可)	Applied Biosystems (Life Technologies)	
マイクロSSP PCR用パッド PE9700用	One Lambda / ベリタス	SSPPADTN
マイクロSSP用泳動槽	One Lambda / ベリタス	MGS108
マイクロピペッター		
マルチチャンネルピペッター		
ボルテックスミキサー		
パワーサプライ		
電子レンジ (ゲル作成用)		
UVトランスイルミネーター		
ゲル撮影装置		

マイクロSSP操作の流れ

- 1. DNA抽出
- 2. PCRサンプル調製
- 3. PCR增幅
- 4. アガロースゲル電気泳動
- 5. 判定

DNA抽出

- ・ 採血の条件
 - ACD加血を推奨
 - ヘパリン加血は不可(Taq DNAポリメラーゼの活性化を阻害する危険があるため、PCR増幅不良を起こす)
- DNA検体は滅菌水で希釈
- DNA濃度: 100 ng/uLで使用
 (50 ng/ul以下は増幅が弱くなる傾向)
- DNA純度 (A260/A280):1.6~1.8

PCRサンプルの調製

- タイピングトレーと試薬を室温に戻す
- 調製前にDNA検体、D-Mixはボルテックスで混和
 - 黄色に変色したD-Mixは使用不可
 - Taq DNAポリメラーゼは、AmpliTaq DNA ポリメラーゼ (Life Technologies)を使用
- D-Mixの入ったチューブにDNA検体、Taq DNAポリメラーゼを入れ、ボルテックスで混和
- DNAとTaq DNAポリメラーゼを添加したD-Mixをウェルに分注
- 確実にシールを貼る

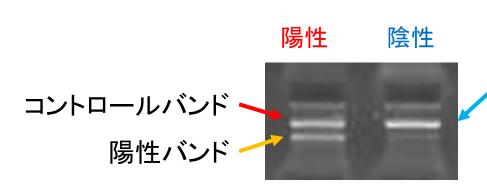
PCR

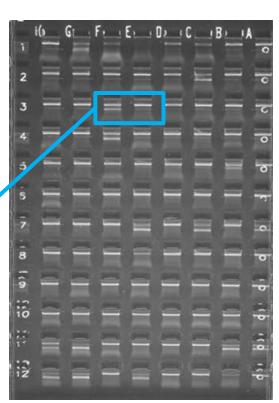
- PCR条件はマイクロSSP製品すべて共通
- PCR時はMicro Ampトレーを使用
- PCRプレートの上にPCR用パッドを必ず載せる
- Gene Amp 9700 Veritiサーマルサイクラーの 使用の場合、Ramp speedが「9600」モードに なっているかを確認

アガロースゲル作製

SeaKem LEアガロース 0.75 g

 $1 \times TBE$


35 mL

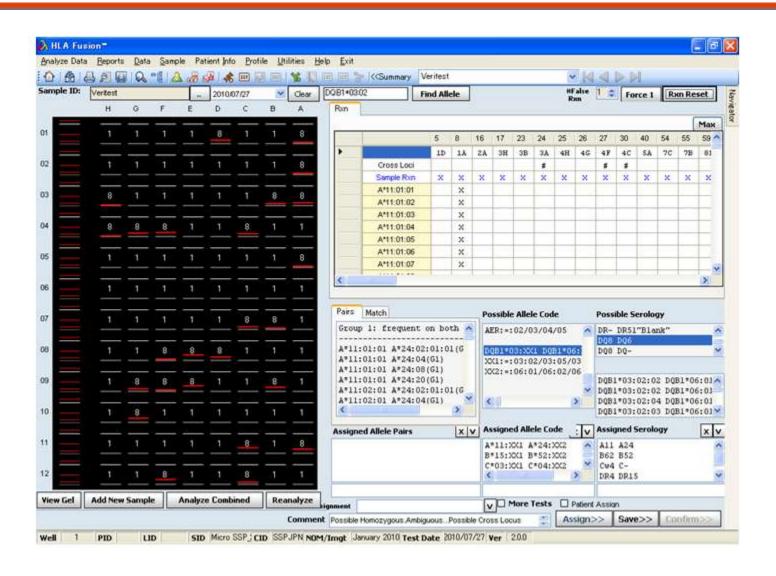

- 電子レンジでゲルの粒子が見えなくなるまで溶解
- + 10 mg/mL エチジウムブロマイド 2 μL
 - よく混合したら専用ゲルボックスに流し込み、コームをは める (泡を入れないように注意)
 - ↓ ゲルが完全に固まるまで室温で静置
- 1×TBE (約15 mL)を専用ボックスを満たし、 慎重にコームを外す

アガロースゲル電気泳動による判定

- 150V定電圧で泳動
- ピンク色のマーカーがウェルの半分程度まで到達したら、泳動を終える(約3分)
- UVランプ上で写真撮影
- 陽性・陰性の判定へ

マイクロSSPのデータ解析

- 解析ソフトウェア(HLA Fusion 2.0) を使用
 - 自動解析
 - Ambiguityの表示
 - 集団のアリル頻度によるソーティングも可能
- ワークシートの使用


HLA Fusion 2.0の特長

- 半年に1度nomenclatureのデータベース更新を行うため、常に新しいアリル情報で解析
- ・抗原タイピング、抗体検査のデータ解析を同 ーのソフトウェアで解析可能
- ・ 製品のロット変更に素早く対応
- 「アリルフィルター」を使用して、日本人の頻度に応じて結果のソーティング(並び替え)が可能

HLA Fusion 2.0の解析画面

マイクロSSP レポート出力画面例

MSSP Veritas Techsupport

atient l	D:								Name:	
ample	ID:	Verite	st						Local ID:	
Assigned Allele Pairs:		A*11:01:01 A*24:02:01:01 A*11:01:01 A*24:20 A*11:02:01 A*24:08 B*15:07 B*52:01:01 C*04:01:01:01 C*14:03 DRB1*04:06:01 DRB1*15:02:01 DRB4*01:03:01:01 DRB5*01:01:01						A*11:01:01 A*24:04 A*11:02:01 A*24:02:01:01 A*11:02:01 A*24:20 B*15:27:01 B*52:01:01 DQB1*03:02:01 DQB1*06:01:01 DRB1*04:10 DRB1*15:02:01 DRB4*01:03:01:01 DRB5*01:02	A*11:01:01 A*24:08 A*11:02:01 A*24:04 B*15:01:01:01 B*52:01:01 B*15:28 B*52:01:01 DRB1*04:05:01 DRB1*15:02:01 DRB4*01:02 DRB5*02:02 DRB4*01:03:01:01 DRB5*02:02	
	н	G	F	E	D	\mathbf{c}	В	A		
1	1	1	1	1	8	1	1	8		
2	1	1	1	1	1	1	1	8		
3	8	1	1	1	1	1	8	8		
4	8	8	8	1	1	8	1	1		
5	1	1	1	1	1	1	1	8		
6	1	1	1	1	1	1	1	1		
7	1	1	1	1	1	8	8	1		
8	1	1	8	8	8	1	1	1		
9	1	8	8	8	1	1	8	1		
10	1	8	1	1	1	1	1	1		
11	1	1	1	1	1	8	1	8		
12	1	1	8	1	1	8	1	1		

- レポート内容はカスタマイズ可能
- レポートはPDF形式などでエクスポート可能

マイクロSSP 製品紹介

- Genericトレー
- High Resolution トレー

• Allele Specificトレー

マイクロSSP Genericトレー

- 用途: 抗原レベルのタイピング(低解像度のDNAタイピング)
- 製品例: クラス タイピング用

商品コード	製品名	梱包単位
SSP1L	マイクロSSP クラスI Generic Typing Kit	12 tests
SSP1A	マイクロSSP HLA A Typing Kit	12 tests

クラスII タイピング用

商品コード	製品名	梱包単位
SSP2L	マイクロSSP クラスII Generic Typing Kit (DRB/DQB)	30 tests
SSP2LB	マイクロSSP クラスII DRB Only Generic Typing Kit	12 tests

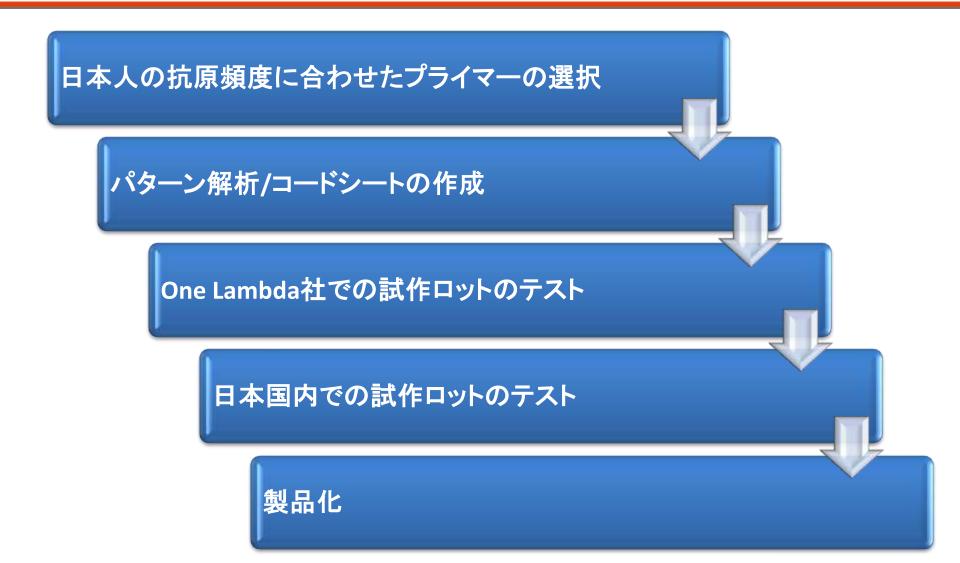
クラスI&クラスII タイピング用

商品コード	製品名	梱包単位
SSPJPN	マイクロSSP ABC/DRDQ JPN	10 tests
SSPABDR	マイクロSSP AB/DR	10 tests

マイクロSSP アリルスペシフィックトレー

- ・ 用途 : 高解像度のアリルタイピング
- 製品例:

商品コード	商品名	梱包単位
SSPR1-01	マイクロSSP Allele Specific A*01/36	8 tests
SSPR1-02	マイクロSSP Allele Specific A*02	4 tests
SSPR1-07	マイクロSSP Allele Specific B*07	8 tests
SSPR1-08	マイクロSSP Allele Specific B*08	4 tests
SSPR2-101	マイクロSSP Allele Specific DRB1*01	8 tests
SSPR2-104	マイクロSSP Allele Specific DRB1*04	8 tests


マイクロSSP JPNキットの作製コンセプト

- 日本人の抗原レベル (HLA型) を網羅
- 96ウエル・1枚で、A/B/C/DR/DQローカス及び DR51/52/53を検索
- 緊急検査への適応 (脳死移植など)
- 日本臓器移植ネットワークから依頼により、 共同でプライマーの選択
 - 1997年 開発開始 → 1998年 発売

マイクロSSP JPNキットの開発の流れ

マイクロSSP JPNキットのメリット

- ・ 既存のマイクロSSPプロトコールを使用
- A/B/C/DR/DQ及びDR51/52/53を一回 (1枚のトレー)の増幅で同時タイピングを可能
 -メーカー既存品を使用する場合: SSP1L + SSP2L
- 日本人頻度の0.01%以上では、HLA型の ambiguityがなく判定可能
- ・日本人頻度の99.0%の抗原の検出可能

SSPJPN 最近のロットの特徴

- 1999年、マイクロSSP JPNを販売開始
- 抗原頻度の変化に対応
- Lot#005~ A29アリルの追加
 - 1999年当時 A29 は日本人では報告なし(VR)
 - 現在A29は 0.03%のアリル頻度との報告
- ユーザーからの要望と情報を反映
- ・ 臓器移植ネットワーク用の早見表を提供